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Abstract

A spectral integral method (IEM) for solving the two-body, one-variable
Lippmann–Schwinger equation for the wavefunction in configuration space
is generalized to the case of the two-variable scattering K-matrix. The main
difficulty is that in this case the driving term of the integral equation is
discontinuous. It is found that the desirable features of the IEM, such as
the economy of mesh points for a given required accuracy, are carried over also
to this case even though the result is also discontinuous. The main innovation
is a judicious choice of the partitions in coordinate space, plus a new recursion
relation forward and backward to the point of discontinuity. For a simple
exponential potential an accuracy of 7 significant figures is achieved for the
K-matrix, with the number N of Chebyshev support points in each partition
equal to 17. For a potential with a large repulsive core, such as the potential
between two He atoms, an accuracy of 7 significant figures requires that N is
increased to 65 support points per partition.

PACS numbers: 02.30.Rz, 02.70.−c, 31.15.−p, 34.50.−s

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is most common to solve the Lippmann–Schwinger integral equation for the scattering
wavefunction or the scattering T-matrix in momentum space [1, 2] because this space is most
closely related to the ingoing and outgoing momenta of the scattering process. However, there
are applications for which it is convenient to formulate the respective integral equation, in
configuration space. One such application occurs if the solution of the three-body Faddeev
integral equations is to be carried out in configuration space, since in this case the two-body
scattering matrices for each of the three arrangements are required [3]. Another reason to
explore methods to calculate the T-matrix in configuration space is that for the description of
the scattering of atoms, not only a higher accuracy than for nuclear physics applications [4, 5]
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is needed1, but also, there can exist large repulsive cores and long-range tails in the interaction
potential that cause difficulties in the momentum space representation.

Recently a method became available for solving the one-variable Lippmann–Schwinger
integral equation in configuration space for the two-body scattering wavefunction [6–8], or for
the bound state wavefunction [9]. The method is economical as well as accurate [10], and is
based on the spectral expansion of the wavefunction into a set of Chebyshev polynomials, one
expansion for each partition, together with a procedure of choosing the partitions in an adaptive
manner. The T- or K-matrix is a function of two variables. It obeys a one-dimensional integral
equation which is very similar to that for the wavefunction, which however has a discontinuity
at a point where the two variables have the same value. It is the purpose of the present
paper to show that it is possible to extend the IEM method to the calculation of the scattering
matrix (the real K-matrix in this case), which is achieved by reconfiguring the partitions in
such a way that the end of one partition is placed at the point of (the derivative) discontinuity
of the driving term. This requires a new set of recursion relations for the coefficients that
connect the K-wavefunction in one partition to that in the adjoining one, as will be described.
Numerical tests performed for particular cases show that there is no loss of the spectral
accuracy of approximately 7–8 significant figures. Integrals of K-matrices over arbitrary (but
continuous) functions in configuration space lead to Lippmann–Schwinger integral equations
with driving terms that are continuous, and the corresponding numerical procedure has already
been described [11].

One difference between the treatments in configuration and momentum spaces is that
the structure of the Green’s function singularity is quite different. In configuration space the
Green’s function has a discontinuity in the derivative, while in momentum space it has a pole.
Hence, configuration space solutions offer an independent and different approach from the
momentum space solutions that can be useful for certain situations. The present study makes
it possible to begin to compare the calculations in the two spaces. A section which illustrates
some comparisons are included here. One example is the case of long-ranged potentials, such
as the Coulomb potential, for which the configuration space is believed to be more economical.
Another example is the case when the potential function has a large repulsive core, such as for
the interaction between atoms. It is possible that in this case the momentum space treatment
is more appropriate, depending on the nature of the repulsive core.

2. Theoretical considerations

Let us consider only one dimension described by the variable r which resides in configuration
space, rather than in momentum space, and extends from 0 to ∞. The Schrödinger equation
for the wavefunction ψ(r) is

(∇ + E)ψ(r) = V ψ(r) (1)

where ∇ = d2/dr2 is the Laplacian, E is the energy, assumed positive here, and V is the ‘local’
potential, all in units of inverse length squared. The operator

(∇ + E) = H0 (2)

is the ‘free’ Hamiltonian, the corresponding Green’s function is denoted as G0(E; r, r ′) =
H−1

0 , and the corresponding integral equation that solves equation (1) for ψ is

ψ(r) = ϕ(r) +
∫ ∞

0
G0(E; r, r ′)V (r ′)ψ(r ′) dr ′. (3)

1 According to Glöckle, private communication, the accuracy of three-body calculations in momentum space is
between 3 and 4 significant figures, that is sufficient for nuclear physics applications.
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Here ϕ(r) is the ‘undistorted’ free on-shell wavefunction (usually a complex plane wave in
three dimensions, but assumed real in this case), solution of (∇ + E)ϕ(r) = 0, and is the
‘driving term’ of equation (3). For the case of zero angular momentum ϕ(r) = sin(kT r),
where kT = √

E is the ‘on-shell’ wave number. The usual physical boundary conditions for
positive energies are that

ψ(r → 0) → 0 and ψ(r → ∞) → N sin(kT r + δ) (4)

where N is an irrelevant normalization constant, and δ is the phase shift.
The K-matrix is a function of two (one-dimensional) variables, that has the following

equivalent properties

(1) ∫ ∞

0
K(E; r, r ′)ϕ(r ′) dr ′ = V (r)ψ(r), (5)

(2)

K(E; r, r ′) = V (r)δ(r − r ′) + V (r)

∫ ∞

0
K(E; r, r̄)G0(E; r̄ , r ′) dr̄ , (6)

(3)

K(E; r, r ′) = V (r)δ(r − r ′) + V (r)G(E; r, r ′)V (r ′). (7)

In equation (7) G(E; r, r ′) is the ‘distorted’ Green’s function (∇ − V + iε + E)−1. The
derivation of equation (7) is based on several identities, such as

ψ = (1 − G0V )−1ϕ = (1 + GV )ϕ, (8)

where the integration signs have been left out. Another such relation is T = (1 − V G0)
−1V.

The effect of V on the phase shift δ is contained entirely in the K-matrix since, in
view of equations (4) and (5), tan(δ) = −(1/kT )

∫ ∞
0 dr sin(kT r)K(r, r̄) sin(kT r̄) dr̄ . Since V

decreases to zero at large distances, K decreases in the same way as r and r̄ tend to infinity,
and hence the integral above need not be carried out to as large a distance as the solution of
equations (1) or (3) for ψ. This point clarifies the computational advantage of solving for K
rather than for ψ, but at the same time the short-range repulsive core is emphasized and needs
a more careful numerical treatment.

An alternate form of writing equation (7) is

K(E; r, r ′) = V (r)δ(r − r ′) + R(E; r, r ′). (9)

where R, in view of equation (6), obeys an integral equation with a discontinuous driving term
V (r)G0(E; r, r ′)V (r ′),

R(E; r, r ′) = V (r)

∫ ∞

0
G0(E; r, r̄)R(E; r̄ , r ′) dr̄ + V (r)G0(E; r, r ′)V (r ′), (10)

which is the equation to be solved. Here G0 is the undistorted (free) two-body Green’s function,
that, for the partial wave in configuration space with angular momentum L = 0, is given by
the well-known expression

G0(E; r, r̄) = − 1

kT

F (E; r<)G(E; r>), (11)

where F(E; r) = sin(kT r);G(E; r) = cos(kT r), and where r< and r> are respectively the
lesser or the larger of r and r̄ .

In view of equation (7),

R = V (r)G(E; r, r ′)V (r ′), (12)
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however, this relation is not made use of here because (a) in the presence of large repulsive
cores the regular and irregular solutions of equation (1), in terms of which G(E; r, r ′) can be
constructed, present numerical accuracy difficulties (as is explained at the end of appendix B)
and (b) integral equations of the type of equation (10), that have different discontinuous driving
terms can be handled numerically by the methods described here. Nevertheless equation (12)
is useful, because it shows that R is symmetric and discontinuous, properties that also follow
from the nature of the driving term in equation (10). It also shows that R is semi-separable
in its two variables, an important property in configuration space. One physical interpretation
of R(E; r, r ′) is that its integral over F represents all second- and higher-order Born terms of
the iterative solution of the L–S equation (3) for the wavefunction. A relation between the
K-matrix, the potential V , and the real part of the scattering wavefunction ψ, that will be used
for numerical checking purposes, is equation (5) that, in the present notation is

V (r)ψ(r) =
∫ ∞

0
K(E; r, r̄)F (E; r̄) dr̄ . (13)

3. The spectral method

A very brief review of this method [6] is given below. The application to the solution of
equation (10) is described in detail in [12], and a description of the solution of the
Lippmann–Schwinger equation with a continuous general driving term, different from that in
equation (3), is given in [11]. One essential feature of the IEM is to divide the entire radial
range into partitions, and expand the unknown function in each partition in terms of a small
number N (�17) of basis functions such as Chebyshev or Legendre polynomials. Partitioning
has the merit (a) that the number of mesh points is very economical, since the partitions
are concentrated automatically and adaptively in those regions where the function varies
most rapidly, (b) the accuracy control of the spectral expansions is also maintained and (c)
the singularity in the driving term of equation (10) described below, can be easily handled by
placing the boundary between two partitions at the position of the singularity. The basic reason
that the same partitioning procedure can still be maintained is that the integral in equation (10)
is over one variable only, i.e., the second variable is introduced only parametrically through
the driving term

D(r, r ′) = V (r)G0(E; r, r ′)V (r ′). (14)

For simplicity the energy variable is suppressed in what follows, and the angular momentum
quantum number is assumed to be � = 0. In order to simplify the notation, it is useful to define
the functions F and G as

F(r) = F(r)V (r) (15)

G(r) = G(r)V (r) (16)

in terms of which the driving term, equation (14), is given by

D(E; r, r ′) = − 1

kT

F(E; r<)G(E; r>), (17)

where r< = r and r> = r ′ if r < r ′, or the reverse if r > r ′. Initially, without regard of the
position of r ′, the radial interval is truncated at an upper limit 0 � r � rmax, and that region
is divided into M partitions. The size of each partition and the corresponding number M is
determined automatically by the accuracy criterion according to the properties of Chebyshev
expansions [7, 8], and for this reason these partitions are denoted as Chebyshev partitions in
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what follows. The lower and upper limits of each partition i = 1, 2, . . . ,M are denoted by
ti−1 and ti , respectively,

ti−1 � ri < ti, (18)

and if r is contained in partition i it is denoted as ri . A second mesh of Nrp equidistant points
r ′ is set up in the same radial interval [0, rmax] at a fixed mesh distance of hrp. For a point r ′ on
this mesh that falls into a particular Chebyshev partition j , this partition is further divided into
two, with r ′ located at the border between the two sub-partitions. The left (right) sub-partition
is denoted as jL(jR).

The integral operator G0 restricted to partition i is denoted as Gi and when applied to a
function ξ(r̄) the result is

Giξ ≡ − 1

kT

G(ri)

∫ ti

ti−1

F(r̄)ξ(r̄) dr̄ − 1

kT

F (ri)

∫ ti

ri

G(r̄)ξ(r̄) dr̄ . (19)

Inserting equation (9) into (10) one obtains

Ri,j − V (ri)GiRi,j = D(ri, r
′
j ) + G(ri)

∫ ti−1

0
(−)

1

kT

F0(r̄)R(r̄, r ′
j ) dr̄

+ F(ri)

∫ rmax

ti

(−)
1

kT

G0(r̄)R(r̄, r ′
j ) dr̄ . (20)

where the left-hand side of equation (20) denotes R(ri, r
′
j ) − V (ri)

∫ ti
ti−1

G0(r, r̄)R(r̄, r ′) dr̄ .

The integrals in equation (20) do not depend on ri, and are denoted as

Ai(r
′
j ) = − 1

kT

∫ rmax

ti

G(r̄)R(r̄, r ′
j ) dr̄ (21)

Bi(r
′
j ) = − 1

kT

∫ ti−1

0
F(r̄)R(r̄, r ′

j ) dr̄ . (22)

In view of the linearity of the operator (1 − V Gi ) on the left-hand side of equation (20), the
solution of equation (20) can be written as [6] a linear combination of three functions Y,Z

and S

R(ri, r
′
j ) = Ai(r

′
j )Yi(ri) + Bi(r

′
j )Zi(ri) + Si,j (ri, r

′
j ) (23)

that respectively are the solutions of

[1 − V (ri)Gi]Yi = F(ri) (24)

[1 − V (ri)Gi]Zi = G(ri) (25)

[1 − V (ri)Gi]Sij = D(ri, r
′
j ) (26)

in each interval i. The solutions Y and Z are obtained by expanding them into Chebyshev
polynomials and calculating the coefficients of the expansion by the Curtis–Clenshaw method
[13]. A new feature is the appearance of the third function Sij , that, in view of equation (17)
is given by

Sij (ri, r
′
j ) = − 1

kT

Yi(ri)G(r ′
j ) i < j (27)

Sij (ri, r
′
j ) = − 1

kT

Zi(ri)F(r ′
j ) i > j. (28)

5



J. Phys. A: Math. Theor. 42 (2009) 015201 G Rawitscher

The calculations of the coefficients A and B is achieved by means of recursion relations,
described in [11]. They consist in propagating the coefficients forward from partition i = 1
to partition jL, and backward, from partition M to jL. By equating the two results in partition
jL, all the coefficients can be determined as a function of r ′. These forward and backward
propagations to the point r ′

j bear some similarity to the method described in [9] for the
calculation of energy eigenvalues of the Schrödinger equation, where the wavefunction is also
propagated forward and backward to an internal matching point. For i 	= j the result is a
semi-separable expression of the form

R(ri, r
′
j ) = [Ai(r

′
j ) − G(r ′

j )/k]Yi(ri) + Bi(r
′
j )Zi(ri), i < j (29)

R(ri, r
′
j ) = Ai(r

′
j )Yi(ri) + [Bi(r

′
j ) − F(r ′

j )/k]Zi(ri), i > j. (30)

This semi-separability leads to an economy of the computational effort, and is in agreement
with the semi-separable nature of the distorted Green’s function in equation (12).

If the driving term in equation (17) were set to zero, the quantities Si,j in equation (26)
would vanish, and hence equation (10) would be of the form

R(E; r, r ′) = V (r)

∫ ∞

0
G0(E; r, r̄)R(E; r̄ , r ′) dr̄ . (31)

The solution R of this equation vanishes, unless the determinant of the discretized form of
the operator 1 − V (r)

∫ ∞
0 dr̄ G0(E; r, r̄) is zero. This determinant does vanish for particular

discrete energies which are the bound states of the two-body system. As the energy E ranges
over the negative values which include bound state energies, poles in the R-matrix occur.
However, the exploration of these singularities will be left to a future study.

4. Numerical examples

Two different potentials in equations (1) or (10) are used for the numerical examples presented
here. One is a simple exponential potential and the other is a potential describing the interaction
between two helium atoms, based on the potential TTY [14, 15]2. For the He–He case
a repulsive core is applied for a distance less than rcut = 4.5a0. This core is of the form
a + br + cr2, with the coefficients a, b and c determined such that the repulsive core is equal to
the value, the first, and second derivatives of TTY at r = rcut. Graphs of the He–He potential,
and the corresponding repulsive cores, are shown in figures 3 and 4, respectively, in [11]. The
numerical IEM calculations are carried out from r = 0 to r = rmax, so as to include the effect
of the core accurately, in contrast to setting to zero the wavefunction in the radial region from
the origin to a particular core radius. In [11] it was shown that the repulsive core had no
significant effect for values of rcut < 3a0. The value of the accuracy parameter is tol = 10−8,
and the wave number is kT = 1.5a−1

0 . The potential and the wave number are in units of
inverse length squared and inverse length, respectively. The length units are either f m for the
exponential case, or Bohr a0 for the atomic case, as is described in the appendix.

4.1. The exponential example

The potential in equation (10) is V (r) = ± exp(−ar), with a = 1 fm−1. The R-matrix for the
repulsive case (+sign) is shown in figure 1, and the behavior of the diagonal part of R is shown
in figure 2. The derivative discontinuity of R(r, r ′) at r = r ′ is clearly visible in figure 1, and

2 The authors thank Professor F A Gianturco of [15] from the University of Rome ‘La Sapienza’ for stimulating
conversations and for permission to use his TTY Fortran code.
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0

1

2

0

1

2

0

0.05

 r r prime

Figure 1. The R-matrix for the repulsive exponential potential V = exp(−ar). The wave number
kT is 1.5 fm−1, a = 1 fm−1 and R is in units of fm−3. The discontinuity in the derivative, for r = r ′
is clearly visible.

0 0.5 1 1.5 2 2.5

0

0.05

radial distance r

R
d

ia
g

 =
 R

(r
,r

)

Figure 2. The diagonal part of the R-matrix, shown in figure 1.

it is also seen that R is large in the radial region where the potential is large, in agreement with
equation (12). These features are also present for the He–He case, described below.

4.2. The He–He case

For the He–He case the potential is shown in figure 3. It has a strong repulsive core, that is
not adequately represented by the formula described in [14, 15] (see footnote 2). Since the
result for the R-matrix depends significantly on the nature of the repulsive core, an ‘artificial’
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5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

1.2

 r

Figure 3. The He–He atom interaction, based on the potential TTY [14]. The units for the
distance are a0 (the Bohr radius) and (a0)

−2 for the potential. For distances less than 4.5a0 (not
shown here) a repulsive soft core is matched to this potential, as described in the text. At r � 0
its value is �150(a0)

−2 . The He–He dimer is very weakly bound, with a binding energy of
3.02 × 10−5(a0)

−2, or �10−7 eV. Upon division by the factor 7296.3 this potential is transformed
to atomic energy units, as described in [9].

repulsive soft core was used to replace the repulsive core of TTY for distances 0 < r � rcut.
This core is of the form a + br + cr2, with the coefficients a, b and c determined such that
the repulsive core is equal to the value, the first, and second derivatives of TTY at r = rcut.
This form of the core is less unphysical than the ‘cut-off’ core used in our previous numerical
calculations of the binding energy of the He–He dimer [9], for which V was replaced by a
constant value V (rcut) for 0 < r � rcut.

The R-matrix at small distances is shown in figure 4. The values of R are very large in the
region or the large repulsive core, but they become smaller at larger distances for which the
potential becomes progressively smaller, as is illustrated in figures 5 and 6.
The diagonal parts of the He–He R-matrix are shown in figures 7 and 8, for small and large

distances, respectively.

5. Comparison between the momentum and configuration space representations

In this section the momentum space representations of the K-matrix will be compared with a
hybrid representations for the interaction between two He atoms. In the hybrid representation
one coordinate is in configuration space and the other in momentum space, while in the
momentum representation both coordinates are in momentum space. The two representations
are defined by the integrals

〈r|T |kd〉 =
∫ r max

0
T (r, r ′) sin(kdr

′) dr ′, (32)

where the integral (32) is evaluated numerically according to [11], and

〈k|T |kd〉 =
∫ r max

0
〈r|T |kd〉 sin(kr) dr. (33)

8
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1

0

 r r prime

Figure 4. The R-matrix for the He–He potential at distances well inside of the repulsive core, with
rcut = 4.5a0, and kT = 1.5a−1

0 . The units of R are a−3
0 .

4.5
5

5.5
6

4.5

5

5.5

6

0

 r r prime

Figure 5. The He–He R-matrix, same as in figure 4, but at larger distances, straddling the end of
the repulsive core and the attractive potential valley.

The He–He potential described above was used with two different repulsive cores: a mild
repulsive core defined by rcut = 4.5a−1

0 and a strong repulsive core defined by rcut = 3.5a−1
0 .

These repulsive cores are softer and more rounded than the repulsive cores described in
section 4 above, so as not to introduce excessive momentum components into the momentum
representation of K. They are obtained by means of a combination of exponential functions of
r, and are ‘grafted on’ to the He–He potential so that the value and derivative of the repulsive
core agree with the corresponding values of the He–He potential at r = rcut. Figure 9 illustrates
these properties. For rcut = 3.5a0 the potential reaches a maximum value of 472a−2

0 at r = 0.
The results for the two representations of K are shown in figures 10 and 11, respectively.
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15
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 r r prime

Figure 6. The He–He R-matrix, same as in figure 4, at distances between 9 and 12a0 where the
potential is of the r−6 form. The value of R is of the order of 10−5 (a0)

−3.

0 1 2 3 4

0

radial distance r

R
d

ia
g

 =
 R

(r
,r

)

Figure 7. The diagonal part of the He–He R-matrix, shown in figure 4 at small distances.

While in the hybrid representation (top panels of both figures) both types of repulsive cores
give a result that is not strongly oscillatory at large distances, the momentum representation
remains oscillatory out to larger distances in the momentum variable k. This is particularly
clear for the case for rcut = 3.5a0 and kd = 4.5 a−1

0 . The figures also show that in momentum
space the weak repulsive core is easier to handle than the stronger repulsive core, in that the
oscillations at large momenta have a smaller amplitude.

A similar result was found for the case of a nucleon–nucleon potential (called Malfliet–
Tjon in nuclear physics applications) composed of two exponential functions of different
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)

Figure 8. Same as figure 7 for large distances.
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rcut = 3.5 a
0
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0

Figure 9. Two repulsive potential cores grafted on to the He–He TTY potential at the distances
rcut, used for the comparison of the configuration and momentum space representations of the
K-matrix. These repulsive cores are softer than those displayed in figure 3.

ranges. At short distances the potential is repulsive, reaches a negative minimum as r increases,
and finally decays exponentially to zero at large distances. In the momentum representation
the K-matrix decreases to zero in the momentum variable much more slowly than in the
r-variable in the hybrid representation. Furthermore, when a repulsive Coulomb potential is
added the K-matrix, the momentum representation is much more sensitive to the presence of
the Coulomb potential than the hybrid representation.
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Figure 10. Comparison of the hybrid and the full momentum representations (upper and lower
panels, respectively) of the K-matrix for the He–He potential with a soft repulsive core illustrated
in figure 9 for rcut = 4.5a0. The momentum kT that defines the energy of the K-matrix is 3.5a−1
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Figure 11. Same as figure 10 for a more repulsive soft core, described by rcut = 3.5a0.

6. Summary and conclusions

In this paper the spectral IEM method for solving the one-variable Lippmann–Schwinger
integral equation (L–S) in configuration space for the wavefunction [6, 8], or for obtaining
integrals of the two-body scattering K-matrix over another function [11], is extended to the
solution of a two variable L–S equation, also in configuration space. The numerical focus is
for the calculation of a function R(r, r ′) which arises when one subtracts from the K-matrix a
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delta-function multiplying the (local) potential, equation (9). The L–S equation for the latter,
equation (10), is of the type addressed in the present numerical calculation. The driving term
for this equation is continuous but has a discontinuous derivative at r = r ′. That discontinuity
also propagates into the R-matrix, and makes the calculation more cumbersome. This difficulty
is overcome by constructing the partitions into which the radial domain is divided in such a way
that the point r ′ is located at the end-point of a partition without affecting the other partitions.
This procedure is repeated for all values of r ′ contained in a prescribed set of mesh of points.
Otherwise the calculation is very similar to the spectral IEM procedure for the solution of
the one-variable L–S equation, whose accuracy and reliability was previously demonstrated
in various applications [9, 10]. The accuracy of the K-matrix attained in this procedure, of
between 7 or 8 significant figures, is demonstrated by verifying the accuracy and validity of
an identity, equation (13), as documented in appendix B. Appendix C documents the stability
and accuracy of the IEM for obtaining bound-state energies, and compares the result for the
He–He dimer with that of [16].

Two numerical examples are described. One, in which the potential is a simple exponential
function of r, and the other in which the potential describes the interaction between two helium
atoms [14]. The latter example was chosen because of the presence of a strong repulsive core
at small interatomic distances, and hence is suitable to test how well the method could handle
the repulsive core. For the exponential case the number N of Chebyshev support points in
each partition could remain at the ‘canonical’ value of 17, but for the He–He case, in view
of the presence of the strong repulsive core, the number of support points in each partition
had to be increased to 65. With that change no difficulty was found in treating the repulsive
core. A preliminary comparison of the configuration and momentum representations of the
K-matrix shows that in the configuration space the representation is contained in a relatively
small radial interval, small compared to the radial extent of the scattering wavefunction, while
in momentum space the momentum interval is much larger. This result needs to be studied
in more detail, but is related to the fact that in configuration space the K-matrix is connected
to the product of a wavefunction times the potential, as shown by equation (12). This is also
why the repulsive core plays a larger role in the calculation of the K- (or) T-matrix than in the
calculation of a wavefunction.

The main result of the present study is to show that the adaptive spectral integral equation
method is well suited to calculate the K- (or) T-matrix in configuration space. This, together
with the ability of the IEM to calculate integrals of the K-matrix over functions, all in
configuration space [11], makes it now possible to return to configuration space for the
calculation of scattering functions defined through integral equations, including the solution
of the three-body Faddeev integral equations in configuration space.
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Appendix A. Units and dimensions

The potential energy V̄ and the energy Ē in the Schrödinger equation are normally given in
units of energy, while the distance is in units of length (�). By multiplying all terms in the
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Schrödinger equation by 2μ/h̄2, where μ is the reduced mass of the two colliding particles,
and h̄ is Planck’s constant divided by 2π, then all terms in the scaled Schrödinger equation
acquire dimensions of �−2. The new potential energy V and the energy E then are

V = QV̄ , (A.1)

E = k2 = QĒ, (A.2)

where Q is a scaling factor.
For nuclear physics applications Ē and V̄ are given in MeV, the radial distance in f m and

the corresponding value of Q is

QN = 2μ/h̄2. (A.3)

The corresponding scaled Schrödinger equation is equation (1), and the corresponding L–S
equation is (3). The dimension of the Green’s function G0, equation (11), is �1 (for the
nuclear case � ≡ f m) and hence the operator G0(r, r

′)V (r ′) dr ′ has no dimension. In view
of equation (13), and since F and ψ have no dimension, the T- or K-matrix has dimension
�−3. This dimension is compatible with equation (9), since the delta function has dimension
�−1. The dimension of R is also �−3, which is compatible with equation (10). The dimension
of A and B, equations (21) and (22), is �−1, the dimension of Y and Z, equations (24)
and (25), is �−2, and that of S, (26) is �−3. The quantities G or F have dimensions �−2,

and hence equations (29) and (30) are dimensionally self-consistent, each term having the
dimension �−3.

For atomic physics applications Ē is given in atomic energy units 2R, (R � 13.606 eV)

and the distance r in units of the Bohr radius a0, in which case

QA = 2μ

h̄2 a2
0 × 2R = 2μ

me

, (A.4)

where me is the mass of the electron.

Appendix B. Accuracy tests

The accuracy of the functions Y and Z in each partition, equations (24) and (25), determined
by the size of the partitions, is better than tol = 10−8. In order to obtain a measure of the loss
of accuracy that takes place in the subsequent steps of the calculation, the following two tests
are performed: one that checks the symmetry of the R-matrix, and the other that performs the
numerical integral

IR(r′) =
∫ rmax

0
R(r, r ′) × F0(r) dr (B.1)

which, according to equation (13), should be equal to

IL(r ′) = [ψ(r ′) − F0(r
′)]V (r ′). (B.2)

In table B1 the values of IL and IR above are compared in order to check the accuracy of
their agreement with each other. The accuracy of I(r ′) defined in equation (B.2) is better than
8 significant figures as was previously demonstrated in various applications [9, 10]. For the

14



J. Phys. A: Math. Theor. 42 (2009) 015201 G Rawitscher

Table B1. L and R are the values of equations (B.2) and (B.1), respectively. The numbers after the
e indicate the powers of ten by which the numbers are to be multiplied.

n r = n×π
16 Exp. pot′l He − Hepot′l

10 �1.96 L 3.854 316 05(e − 2) −1.079 593 140(e1)

R 3.854 316 05(e − 2) −1.079 593 140(e1)

15 �2.95 L 4.052 449 38(e − 3) 2.348 628 29(e1)

R 4.052 449 31(e − 3) 2.348 628 33(e1)

20 �3.93 L −5.633 010 764(e − 3) 4.121 564 23

R −5.633 010 723(e − 3) 4.121 564 14

25 �4.91 L −1.073 578 042(e − 3) 1.414 453 3(e − 2)

R −1.073 578 029(e − 3) 1.414 4530(e − 2)

30 �5.89 L 7.192 930 11(e − 4) 8.245 9426(e − 2)

R 7.192 930 28(e − 4) 8.245 9429(e − 2)

35 �6.87 L 2.055 220 67(e − 4) 3.800 324 58(e − 2)

R 2.055 220 71(e − 4) 3.800 323 95(e − 2)

40 �7.85 L −8.596 136 54(e − 5) 1.935 6054(e − 2)

R −8.596 136 75(e − 5) 1.935 6055(e − 2)

exponential case the number of Chebyshev support points in each partition is N = 17, and
only four partitions are required to cover the interval from r = 0 to r = 25.

For He–He case, if N = 17, the interval from 0 to 250 requires 26 partitions, 11 of
which lie in the region of the repulsive core. The corresponding accuracy of the integral I(r)

(not displayed in the table) is three to four significant figures. As N is increased, the size of
each partition increases, correspondingly the number of partitions decreases. The accuracy of
R increases the smaller the number of partitions, because the Chebyshev support points are
those that carry the large change in the R-values, rather than the coefficients A and B. The
results for I(r) for N = 65 are shown in ‘L’ lines of table B1, from which one can deduce
an accuracy for R of at least 7 significant figures. For this case there are only four partitions
in the region [0 −→ 5] of the repulsive core, and four more partitions that cover the whole
remaining distance [5 −→ 250]. These accuracy results for both the exponential and the
He–He cases are confirmed by the degree of symmetry obtained for the R-matrix.

Using MATLAB, version 7.0.1.24704(R14) on a 2.8 GHz intel computer, the total time
required for a He–He calculation of R(r, r ′), with n = 1273 equidistant meshpoints for each
r and r ′, rmax = 250, N = 17 and tol = 10−8 requires 114 s. (This time scales like n2.) For
the same calculation, but with N = 65, the total MATLAB time is 261 s. The corresponding
calculation of the wavefunction ψ, for rmax = 1500 and also 1273 equidistant meshpoints
takes between 1 and 2 s.

The regular and irregular functions ψ and χ that make up the distorted Green’s function,
in terms of which the T- or K-matrix can be expressed, increase and decrease very rapidly,
respectively, in the region of the repulsive core, making it difficult to assess their accuracy. For
the He–He case, for k = 1.5a−1

0 , V ψ increases by 11 orders of magnitude in the radial interval
from 0.1 < r < 2a0, while V χ decreases by 12 orders of magnitude in the same interval. By
contrast, the value of R changes approximately by only 3 orders of magnitude (see figure 7 in
the main text) making the solution of the L–S equation for R numerically more reliable than
the calculation of the distorted Green’s function in the presence of a strong repulsive core.
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Table C1. Comparison of the He–He binding energies obtained by various authors.

B.E. (mK) 〈r〉(nm)

[9], IEM 1.314 61 5.1607

[16], Dubna group 1.309 62

[14], TTY 1.316

Experiment (Grisenti) 0.9–1.4 5.2 ± 0.4

Table C2. Sensitivity of the He–He binding energy to the value of the cut-off radius Rcut.

Rcut(a0) B.E. (mK) 〈r〉(a0)

2.0 1.314 6101 97.7419

2.5 1.314 6101 97.7419

3.0 1.314 6143 97.7418

3.5 1.321 9315 97.4935

Appendix C. Accuracy of the He–He di-atom binding energy

The comparison of the result for the binding energy, obtained with an iterative spectral IEM
method [9], with the most precise result of the Dubna group [16] was already presented in [9].
The comparison is reproduced below as table C1. In an e-mail exchange with the Dubna group
asking what might have caused the discrepancy, Ms Kolganova suggested that the difference
might have been due to a difference in the parametrization of the TTY potential.

In [10] we also studied the sensitivity of the binding energy to rcut. Again we find that for
rcut � 3.0a0 the results are insensitive to the value of rcut. The table from [10] is reproduced
below as table C2. However the cut-off procedures in [10] and that in the present paper are
not the same. In [10] the potential for r � rcut is replaced abruptly by V (rcut), while in the
present paper the change of V is more gradual.
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